Facoltà di Ingegneria - Guida degli insegnamenti (Syllabus)

Program


Search Search    Print Print

Modellistica e Ottimizzazione per i Processi Industriali
Industrial Automation
Leopoldo Ietto

Seat Ingegneria
A.A. 2016/2017
Credits 9
Hours 72
Period II
Language ENG

Prerequisites
Elements of linear algebra, Rudiments of linear matricial algebra., elements of mathematical analysis, Laplace transform. Basic elements of linear system theory.

Learning outcomes
KNOWLEDGE AND UNDERSTANDING:
The purpose of the course is to provide the students with basic and advanced techniques for the analysis and synthesis of digital control systems.
CAPACITY TO APPLY KNOWLEDGE AND UNDERSTANDING:
The student will be able to analyse the technical specifications for the control systems, to choose the most appropriate approach to the synthesis problem, to realize the controller through the implementation of an algorithm.
TRANSVERSAL SKILLS:
The general approach adopted for the analysis and synthesis of the control systems will provide the student with the ability of facing different applications within the same methodological framework. In this way, the acquired competence can be also applied to problems relative to fields like e.g. industrial production management, environment and biomedical engineering.

Program
I-Structure and components of a discrete-time control system. -S-Z mapping -Stability analysis. -Transient and steady-state output response. -Design methods based on a discrete-time equivalent of an analog controller. -Design methods based on diophantine equations. -Eigenvalue assignment with state feedback and dynamic output feedback. - Linguistic description of complex plant dynamics - PID design through fuzzy inference

Development of the examination
LEARNING EVALUATION METHODS
The exam consists of written and oral parts. The written part concerns the analysis and/or design of an industrial control system, possibly using software packages. Lecture notes and books are allowed to be looked at. The oral part consists in a deep discussion on the most important theoretical notions concerning analysis, linguistic description and design of an industrial control system.

LEARNING EVALUATION CRITERIA
The primary goal of the exam is to verify the student capability to autonomously evaluate the essential features of a control problem and to recognize the most appropriate tools to solve it.

LEARNING MEASUREMENT CRITERIA
The learning degree is evaluated through the grasp of the basic principles governing the classical approach to the analysis and synthesis of industrial control systems.

FINAL MARK ALLOCATION CRITERIA
The maximum score is 30/30 and is assigned to students solving the given control problems in fully correct way and show a complete awareness oft the methodologies. The minimum score to overcome the exam is 18/30 and is assigned to students possessing the above requisites in a sufficient level. .

Recommended reading
Lecture notes. -Isidori: “Sistemi di Controllo”, Siderea, Ro K.J. Astrom, B. Wittenmark,”Computer Controlled Systems”, Prentice-Hall Englewood-Cliffs,N.J.1984. -K. Ogata, “ Discrete-Time Control System”, Prentice-Hall, Englewood-Cliffs,N.J., 1987. -R. Isermann: “Digital Control Systems”, Vol 1 e 2, Springer Verlag, Berlino,1989. -M.L. Corradini, G. Orlando, “Controllo Digitale di Sistemi Dinamici”, Franco Angeli, Milano, 2005. -D.Dubois, H. Prade, “Possibility Theory- An Approach to Computerized Processing of Uncertainty”, Plenum Press, N.Y., 1980.

Courses
  • Ingegneria Gestionale (Corso di Laurea Triennale Fuori Sede (DM 270/04))




Università Politecnica delle Marche
P.zza Roma 22, 60121 Ancona
Tel (+39) 071.220.1, Fax (+39) 071.220.2324
P.I. 00382520427