Facoltà di Ingegneria - Guida degli insegnamenti (Syllabus)

Program


Search Search    Print Print

Sistemi Integrati di Produzione (MECC)
Integrated manufacturing systems
Michela Simoncini

Seat Ingegneria
A.A. 2016/2017
Credits 6
Hours 48
Period I
Language ENG

Prerequisites
Knowledge on fundamental aspects concerning the most common manufacturing processes, the machine tools, production planning and control, industrial logistic and automation is required.

Learning outcomes
KNOWLEDGE AND UNDERSTANDING:
The course intends to acquire advanced knowledge on the range of activities allowing the design and manage of production systems used in the manufacturing industry. This knowledge, by integrating acquired notions in the courses of mechanical technology and production systems, production planning and control, industrial plants and manufacturing systems, will represent the insights that will enrich the knowledge of the manufacturing production industry, so that the student will acquire a clear understanding of the most wider multidisciplinary context of engineering, with a clear reference to the aspects strictly connected with the systems and production technologies
CAPACITY TO APPLY KNOWLEDGE AND UNDERSTANDING:
In order to address advanced design themes, even of considerable complexity, and treat the innovation and development of new products, technological processes and production systems through the application of knowledge, the student must acquire the ability to design and manage the systems of production used by the manufacturing industry in the industrial field, with particular reference to those with a high level of automation. This capacity is expressed through a range of vocational skills, such as: 1. the ability to choose the components and layout of the production system for the solution of the specific problem; 2. the ability to design the production systems using advanced simulation tools; 3. the ability to integrate the various components which make up the production system.
TRANSVERSAL SKILLS:
The resolving of individual exercises and classroom group workshops will help to improve the learning skills autonomously, the degree of independent judgment and the communication skills resulting from teamworking

Program
INTRODUCTION. Manufacturing of discrete parts and production system, production typologies (job shop, batch, cellular and mass production), automation in production system (fixed, programmable and flexible automation), integration in manufacturing, automation principles and strategies, CIM, integrated design of product-process-manufacturing system. DECISION MAKING. Decision making processes and environment, decision making attributes in production (time and productivity, cost, flexibility and quality). NUMERICAL CONTROL. Components of numerical control system, reference system, positioning, types of numerical control, positioning and speed control,accuracy and repeteability, interpolation, computer numerical control, distributed numerical control, CNC programming. APPLICATION OF COMPUTER NUMERICAL CONTROL. Machining center, turning center, mill-turining center, coordinate measurement machine, other applications. INDUSTRIAL ROBOTS. Components, joints, serial and parallel robots, arm and wrist configurations, work volume, actuators, load capacity, dynamic performance characteristics, control systems, applications of industrial robots. MATERIAL HANDLING. Material transport equipment, storage systems, material handling system design, characteristics and analysis of automated guided vehicles, characteristics and analysis of conveyor systems. AUTOMATED PRODUCTION LINES. Fundamental aspects, analysis of single model and mixed model production lines, line balancing algorithms, production lines with buffer storages. Application cases. FLEXIBLE MANUFACTURING SYSTEMS. Fundamental aspects, classification, components, flexibility criteria, applications and benefits. Application cases.

Development of the examination
LEARNING EVALUATION METHODS
The exam consists in written and oral tests. In the written one, the student must answer four questions chosen among the topics of the course. It will also be required to solve practical cases related to complex problems. The oral exam will prove the level of knowledge demonstrated in the written test.

LEARNING EVALUATION CRITERIA
The student has to be able to autonomously deal with the application of the main models, metedologies and tools used in the analysis, design and management of integrated manufacturing systems. Aspects, such as the mastery of technical language and clarity of exposition, will also be assessed. Finally, the ability to properly use the acquired knowledge in solving complex problems must be proven.

LEARNING MEASUREMENT CRITERIA
The ability to independently deal with the topics of the course by applying the models, methods and tools in analysing, designing and managing the integrated manufacturing systems, the clarity of exposition, the mastery of technical language are evaluated.

FINAL MARK ALLOCATION CRITERIA
The final grade will be assigned considering the evaluation obtained in both tests. The minimum score, equal to eighteen points, will be achieved by the students who demonstrate sufficient capacity to answer to all the questions raised. The maximum grade, equal to thirty points with honors, will be given to students who have proven full mastery of the topics, exposed in full autonomy and with appropriate technical language.

Recommended reading
M. P. Groover, “Automation, Production Systems and Computer-Integrated Manufacturing”, Prentice Hall, 2001. Slides of the lectures are available on the “Moodle platform“ of the Polytechnic University of Marche.

Courses
  • Ingegneria Meccanica (Corso di Laurea Magistrale (DM 270/04))




Università Politecnica delle Marche
P.zza Roma 22, 60121 Ancona
Tel (+39) 071.220.1, Fax (+39) 071.220.2324
P.I. 00382520427